Dialogue Act Sequence Labeling using Hierarchical encoder with CRF
نویسندگان
چکیده
Dialogue Act recognition associate dialogue acts (i.e., semantic labels) to utterances in a conversation. The problem of associating semantic labels to utterances can be treated as a sequence labeling problem. In this work, we build a hierarchical recurrent neural network using bidirectional LSTM as a base unit and the conditional random field (CRF) as the top layer to classify each utterance into its corresponding dialogue act. The hierarchical network learns representations at multiple levels, i.e., word level, utterance level, and conversation level. The conversation level representations are input to the CRF layer, which takes into account not only all previous utterances but also their dialogue acts, thus modeling the dependency among both, labels and utterances, an important consideration of natural dialogue. We validate our approach on two different benchmark data sets, Switchboard and Meeting Recorder Dialogue Act, and show performance improvement over the state-of-the-art methods by 2.2% and 4.1% absolute points, respectively. It is worth noting that the inter-annotator agreement on Switchboard data set is 84%, and our method is able to achieve the accuracy of about 79% despite being trained on the noisy data.
منابع مشابه
DAP: LSTM-CRF Auto-encoder
The LSTM-CRF is a hybrid graphical model which achieves state-of-the-art performance in supervised sequence labeling tasks. Collecting labeled data consumes lots of human resources and time. Thus, we want to improve the performance of LSTM-CRF by semi-supervised learning. Typically, people use pre-trained word representation to initialize models embedding layer from unlabeled data. However, the...
متن کاملLearning conditional random field with hierarchical representations for dialogue act recognition
The analysis of dialogue act is important for computers to understand natural-language dialogues because the dialogue act of an utterance characterizes the speaker’s intention. In this paper, we create a new model that adapts Conditional Random Field (CRF) with efficient hierarchical representations of the raw inputs to solve the dialogue act recognition problem. The proposed model has two adva...
متن کاملMulti-Task CRF Model for Predicting Issue Resolution Status in Social Media based Customer Care
In this paper, we present a multitask learning method for predicting the resolution status of the issues expressed in social media conversations among customer-care agents and social media users, along with the nature of dialogues of those conversations. Our method extends beyond social media conversation analysis, and is naturally applicable to general multiple sequence labeling tasks where ea...
متن کاملDialogue Act Recognition via CRF-Attentive Structured Network
Dialogue Act Recognition (DAR) is a challenging problem in dialogue interpretation, which aims to attach semantic labels to utterances and characterize the speaker’s intention. Currently, many existing approaches formulate the DAR problem ranging from multi-classification to structured prediction, which suffer from handcrafted feature extensions and attentive contextual structural dependencies....
متن کاملBuilding End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models
We investigate the task of building open domain, conversational dialogue systems based on large dialogue corpora using generative models. Generative models produce system responses that are autonomously generated word-by-word, opening up the possibility for realistic, flexible interactions. In support of this goal, we extend the recently proposed hierarchical recurrent encoder-decoder neural ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.04250 شماره
صفحات -
تاریخ انتشار 2017